Circulating platelet-derived vesicle in atrial fibrillation

Main Article Content

Alexander E Berezin
Alexander A Berezin

Abstract

Platelet vesiculation is common factor contributing in coagulation and thromboembolism in patients with atrial fibrillation (AF). Platelet-derived vesicles are involved in the coagulation, thromboembolism, microvascular inflammation, arterial stiffness, vascular calcification, atherosclerotic plaque shaping and rupture, endothelial dysfunction, cardiac remodelling, and kidney dysfunction. Recent clinical studies have revealed elevated concentrations of platelet-derived vesicles in peripheral blood of patients with current AF and history of AF. The aim of the mini review is to discuss the role of platelet-derived micro vesicles as predictive biomarker in AF. Serial measures of circulating levels of platelet-derived vesicules are discussed to be useful in stratification of AF patients at risk of thromboembolic complications, but there is limiting evidence regarding their predictive value that requires further investigations in large clinical trials.

Article Details

Berezin, A. E., & Berezin, A. A. (2019). Circulating platelet-derived vesicle in atrial fibrillation. Annals of Clinical Hypertension, 3(1), 031–038. https://doi.org/10.29328/journal.ach.1001016
Mini Reviews

Copyright (c) 2019 Berezin AE, et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Shanmuganathan M, Vughs J, Noseda M, Emanueli C. Exosomes: Basic Biology and Technological Advancements Suggesting Their Potential as Ischemic Heart Disease Therapeutics. Front Physiol. 2018; 9: 1159. Ref.: https://tinyurl.com/yxa5gxag

Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P. Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem. 2015; 4: 562-568. Ref.: https://tinyurl.com/yyf9f8ds

Nawaz M, Shah N, Zanetti BR, Maugeri M, Silvestre RN, et al. Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells. 2018; 7. Ref.: https://tinyurl.com/y4ouroko

La Marca V, Fierabracci A. Insights into the Diagnostic Potential of Extracellular Vesicles and Their miRNA Signature from Liquid Biopsy as Early Biomarkers of Diabetic Micro/Macrovascular Complications. Int J Mol Sci. 2017; 18. Ref.: https://tinyurl.com/y5jexz6r

Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. Pattern of circulating microparticles in chronic heart failure patients with metabolic syndrome: Relevance to neurohumoral and inflammatory activation. BBA Clin. 2015; 4: 69-75. Ref.: https://tinyurl.com/y3jb5jdj

Caporali A, Martello A, Miscianinov V, Maselli D, Vono R, et al. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther. 2017; 171: 56-64. Ref.: https://tinyurl.com/y5jn9uel

De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015; 6: 203. Ref.: https://tinyurl.com/y3cxpv8a

Berezin AE. Microparticles in Chronic Heart Failure. Adv Clin Chem. 2017; 81: 1-41. Ref.: https://tinyurl.com/y3v76f6l

Berezin AE, Kremzer AA, Cammarota G, Zulli A, Petrovic D, et al. Circulating endothelial-derived apoptotic microparticles and insulin resistance in non-diabetic patients with chronic heart failure. Clin Chem Lab Med. 2016; 54: 1259-1267. Ref.: https://tinyurl.com/yxtq8m22

Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, et al. Advances in exosomes technology. Clin Chim Acta. 2019; 493:14-19. Ref.: https://tinyurl.com/y37eudtp

Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. Semin Cell Dev Biol. 2018; 74: 66-77. Ref.: https://tinyurl.com/yxwl6syy

Hervera A, Santos CX, De Virgiliis F, Shah AM, Di Giovanni S. Paracrine Mechanisms of Redox Signalling for Postmitotic Cell and Tissue Regeneration. Trends Cell Biol. 2019; 29: 514-530. Ref.: https://tinyurl.com/yyxmmqb7

Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, et al. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. Biofactors. 2019; 45: 293-303. Ref.: https://tinyurl.com/y35o3nt2

Navarro A, Molins L, Marrades RM, Moises J, Viñolas N, et al. Exosome Analysis in Tumor-Draining Pulmonary Vein Identifies NSCLC Patients with Higher Risk of Relapse after Curative Surgery. Cancers. 2019; 11. Ref.: https://tinyurl.com/y5lxo9ux

Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, et al. Tumor-derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019. Ref.: https://tinyurl.com/y4qgmaet

Yang L, Zhu J, Zhang C, Wang J, Yue F, et al. Stem cell-derived extracellular vesicles for myocardial infarction: a meta-analysis of controlled animal studies. Aging (Albany NY). 2019; 11: 1129-1150. Ref.: https://tinyurl.com/y48bbwz5

Bei Y, Das S, Rodosthenous RS, Holvoet P, Vanhaverbeke M, et al. Extracellular Vesicles in Cardiovascular Theranostics. Theranostics. 2017; 7: 4168-4182. Ref.: https://tinyurl.com/yxadvxs7

Kenari AN, Kastaniegaard K, Greening DW, Shambrook M, Stensballe A, et al. Exosome-mimetic nanovesicles contain distinct proteome and post-translational modified protein cargo, in comparison to exosomes. Proteomics. 2019; e1800161.

Vagner T, Chin A, Mariscal J, Bannykh S, Engman D, et al. Protein composition reflects extracellular vesicle heterogeneity. Proteomics. 2019; 19: e1800167. Ref.: https://tinyurl.com/y5mdty6d

Aatonen M, Valkonen S, Böing A, Yuana Y, Nieuwland R, et al. Isolation of Platelet-Derived Extracellular Vesicles. Methods Mol Biol. 2017; 1545: 177-188. Ref.: https://tinyurl.com/y4szfu9h

Hedley BD, Llewellyn-Smith N, Lang S, Hsia CC, MacNamara N, et al. Combined accurate platelet enumeration and reticulated platelet determination by flow cytometry. Cytometry B Clin Cytom. 2015; 88: 330-337. Ref.: https://tinyurl.com/yxmpworn

Bennett JS. The molecular biology of platelet membrane proteins. Semin Hematol. 1990; 27: 186–204. Ref.: https://tinyurl.com/y2235ydv

Clemetson KJ, Clemetson JM. Platelet GPIb complex as a target for anti-thrombotic drug development. Thromb Haemost. 2008; 99: 473-479. Ref.: https://tinyurl.com/y42x8bgg

Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci. 2014; 111: 14888-14893. Ref.: https://tinyurl.com/y5nd5yax

Van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews. 2012; 64: 676-705. Ref.: https://tinyurl.com/yyfpe9eb

Liu C, Zhao J, Tian F, Chang J, Zhang W, Sun J. λ-DNA and Aptamer Mediated Sorting and Analysis of Extracellular Vesicles. J Am Chem Soc. 2019.

Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017; 28: 256-262. Ref.: https://tinyurl.com/y4y22qwm

Lacroix R, Robert S, Poncelet P, Kasthuri R, Key N, et al. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost. 2010; 8: 2571-2574. Ref.: https://tinyurl.com/y6au77ef

Tao SC, Guo SC, Zhang CQ. Platelet-derived Extracellular Vesicles: An Emerging Therapeutic Approach. Int J Biol Sci. 2017; 13: 828-834. Ref.: https://tinyurl.com/y25zsu24

Zaldivia MTK, Hering D, Marusic P, Sata Y, Lee R, et al. Successful Renal Denervation Decreases the Platelet Activation Status in Hypertensive Patients. Cardiovasc Res. 2019. Ref.: https://tinyurl.com/y5stksbw

Zaldivia MT, Rivera J, Hering D, Marusic P, Sata Y, et al. Renal Denervation Reduces Monocyte Activation and Monocyte-Platelet Aggregate Formation: An Anti-Inflammatory Effect Relevant for Cardiovascular Risk. Hypertension. 2017; 69: 323-331. Ref.: https://tinyurl.com/yyrrpyog

Barnes JN, Harvey RE, Miller KB, Jayachandran M, Malterer KR. et al. Cerebrovascular Reactivity and Vascular Activation in Postmenopausal Women with Histories of Preeclampsia. Hypertension. 2018; 71: 110-117. Ref.: https://tinyurl.com/y2jjomjg

Van Wijk MJ, Van Bavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003; 59: 277-287. Ref.: https://tinyurl.com/yycsgewz

Yano Y, Kambayashi J, Shiba E, Sakon M, Oiki E. et al. The role of protein phosphorylation and cytoskeletal reorganization in microparticle formation from the platelet plasma membrane. Biochem J. 1994; 299: 303-308. Ref.: https://tinyurl.com/y4fc4acw

Gemmel CH, Sefton MV, Yeo E. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem. 1993; 268: 14586-14589. Ref.: https://www.ncbi.nlm.nih.gov/pubmed/8325838

Cauwenberghs S, Feijge MA, Harper AG, Sage SO, Curvers J, Heemskerk JW. Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett. 2006; 580: 5313-5320. Ref.: https://tinyurl.com/y3za2dbw

Nomura S, Komiyama Y, Miyake T, Miyazaki Y, Kido H. et al. Amyloid-protein precursor-rich platelet microparticles in thrombotic disease. Thromb Haemost. 1994; 72: 519-522. Ref.: https://tinyurl.com/y3ns39f8

Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med. 2004; 10: 171-8. Ref.: https://tinyurl.com/y5bnadm5

Barry OP, Practico D, Lawson JA, FitzGerald GA. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest. 1997; 99: 2118-2127. Ref.: https://tinyurl.com/y22um7yp

Garcia B, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet particle proteome. J Proteome Res. 2005; 4: 1516-1521. Ref.: https://tinyurl.com/y4vrf9w3

Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008; 111: 5028–5036. Ref.: https://tinyurl.com/y4gymbr8

Conway DS, Pearce LA, Chin BS, Hart RG, Lip GY. Plasma von Willebrand factor and soluble p-selectin as indices of endothelial damage and platelet activation in 1321 patients with nonvalvular atrial fibrillation: relationship to stroke risk factors. Circulation. 2002; 106: 1962-1967. Ref.: https://tinyurl.com/y5aapoc3

Siwaponanan P, Keawvichit R, Udompunturak S, Hunnangkul S, Reesukumal K, et al. Altered profile of circulating microparticles in nonvalvular atrial fibrillation. Clin Cardiol. 2019; 42: 425-431. Ref.: https://tinyurl.com/y5mf3552 w

Jesel L, Abbas M, Toti F, Cohen A, Arentz T, et al. Microparticles in atrial fibrillation: a link between cell activation or apoptosis, tissue remodelling and thrombogenicity. Int J Cardiol. 2013; 168: 660-669. Ref.: https://tinyurl.com/y699dx4g

Horstman LL, Jy W, Bidot CJ, Nordberg ML, Minagar A, et al. Potential roles of cell-derived microparticles in ischemic brain disease. Neurol Res. 2009; 31: 799-806. Ref.: https://tinyurl.com/yysq8hav

Choudhury A, Chung I, Blann AD, Lip GYH. Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to p-selectin and antithrombotic therapy. Chest. 2007; 131: 809-815. Ref.: https://tinyurl.com/y562s9lz

Choudhury A, Chung I, Blann AD, Lip GY. Platelet surface CD62P and CD63, mean platelet volume, and soluble/platelet P-selectin as indexes of platelet function in atrial fibrillation: a comparison of "healthy control subjects" and "disease control subjects" in sinus rhythm. J Am Coll Cardiol. 2007; 49: 1957-1964. Ref.: https://tinyurl.com/y3olruzu

Tan KT, Tayebjee MH, Lim HS, Lip GY. Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet micro particle levels. Diabet Med. 2005; 22: 1657-1662. Ref.: https://tinyurl.com/y34kflz8

Kamath S, Blann AD, Chin BS, Lanza F, Aleil B, et al. A study of platelet activation in atrial fibrillation and the effects of antithrombotic therapy. Eur Heart J. 2002; 23: 1788-1795. Ref.: https://tinyurl.com/y4df4c72

Choudhury A, Chung I, Blann A, Lip GY. Platelet adhesion in atrial fibrillation. Thromb Res. 2007; 120: 623-629. Ref.: https://tinyurl.com/yxdmn3ry