Insights for Antihypertensive pharmacotherapy from the “Calcium Paradox” due to Ca2+/camp Interaction
Main Article Content
Abstract
Several experimental studies performed since 1975, using smooth muscles richly innervated by sympathetic nerves to exclude the autonomic influence of adjusting reflex (rodent vas deferens), showed that L-type voltage-activated Ca2+ channels (VACC) blockers completely inhibited neurogenic contractions induced by electrical field stimulation (EFS) in high concentrations (>10-6 M), but paradoxically increased these EFS-contractions in low concentrations (<10-6 M), suggesting that other mechanisms than only autonomic adjusting reflex are involved in these paradoxical effects. In 2013, we showed that these paradoxical effects of L-type VACC blockers, named by us “calcium paradox” phenomenon, were potentiated by drugs which increase cytosolic cAMP concentration ([cAMP] c-enhancers), such as rolipram, IBMX and forskolin, indicating that this sympathetic hyperactivity drug-induced is due to interaction of the Ca2+/cAMP intracellular signaling pathways (Ca2+/cAMP interaction). Then, the pharmacological manipulation of this interaction produced by combination of the L-type VACC blockers used in the antihypertensive therapy, and [cAMP] c-enhancers used in the antidepressive therapy, could represent a potential cardiovascular risk for hypertensive patients due to sympathetic hyperactivity. Then, we discussed the role of Ca2+/cAMP interaction for antihypertensive pharmacotherapy.
Article Details
Copyright (c) 2017 Bergantin LB, et al.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Grossman E, Messerli FH. Effect of calcium antagonists on sympathetic activity. Eur Heart J. 1998; 19: 27-31. Ref.: https://goo.gl/kv0mWq
Kreye VA, Luth JB. Proceedings: Verapamil-induced phasic contractions of the isolated rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol. 1975. Ref.: https://goo.gl/isGRSy
French AM, Scott NC. A comparison of the effects of nifedipine and verapamil on rat vas deferens. Br J Pharmacol. 1981; 73: 321-323. Ref.: https://goo.gl/VPiQ7p
Moritoki H, Iwamoto T, Kanaya J, Maeshiba Y, Ishida Y, et al. Verapamil enhances the non-adrenergic twitch response of rat vas deferens. Eur J Pharmacol. 1987; 140: 75-83. Ref.: https://goo.gl/AWCnbB
Rae GA, Calixto JB. Interactions of calcium antagonists and the calcium channel agonist Bay K 8644 on neurotransmission of the mouse isolated vas deferens. Br J Pharmacol. 1989; 96: 333-340. Ref.: https://goo.gl/yo7i3y
Bergantin LB, Souza CF, Ferreira RM, Smaili SS, Jurkiewicz NH, et al. Novel model for "calcium paradox" in sympathetic transmission of smooth muscles: role of cyclic AMP pathway. Cell Calcium. 2013; 54: 202-212. Ref.: https://goo.gl/wwbocE
Bergantin LB, Jurkiewicz A, García AG, Caricati-Neto A. A Calcium Paradox in the Context of Neurotransmission. Journal of Pharmacy and Pharmacology. 2015; 3: 253-261. Ref.: https://goo.gl/zeaMXy
Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca2+/cAMP signalling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect. 2015; 3: 181. Ref.: https://goo.gl/iEJcY9
Pohar B, Grad A, Mozina M, Rakovec P, Horvat M. Paradoxical elevation of pulmonary vascular resistance after nifedipine in primary pulmonary hypertension. A case study. Cor et vasa. 1989; 31: 238-241. Ref.: https://goo.gl/IfAwve
Ruzicka M, Coletta E, Floras J, Leenen FH. Effects of low-dose nifedipine GITS on sympathetic activity in young and older patients with hypertension. J Hypertens. 2004; 22: 1039-1044. Ref.: https://goo.gl/csJI90
Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens.Greenwich. 2011; 13: 687-689. Ref.: https://goo.gl/xVvhxz
Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca2+/cAMP intracellular signalling interaction. Eur J Pharmacol. 2016; 788: 255-260. Ref.: https://goo.gl/FBjENG